STRUCTURAL PROPERTIES OF THE EQUILIBRIUM SOLUTIONS OF RICCATI EQUATIONS

Roger W. Brockett**

NASA GRIOTO29

Massachusetts Institute of Technology Cambridge, Massachusetts 02139

In this paper we study the behavior of certain solutions of the quadratic matrix equation

$$A'K + KA - KBB'K = -\rho C'C$$
 (1)

as a function of a real variable ρ . Our main result is a new a priori bound on the solutions. The methods we use draw freely on the variational interpretation of the associated Riccati equation

$$-\dot{K} = A'K + KA - KBB'K + \rho C'C$$

as well as the use of transform techniques and an elementary version of Parseval's formula.

1. Preliminaries

Let A, B, and C be real, constant matrices of dimensions n by n, n by m and q by n respectively. By a <u>linear</u> system we mean a pair of equations

$$\dot{x} = Ax + Bu ; y = Cx$$
 (2)

we also refer to the triple [A,B,C] as a linear system with the understanding that A, B and C are the matrices appearing in equation (2). If the conditions

i) rank (B, AB, ..., $A^{n-1}B$) = n

and

ii) rank (C; CA;,...; CA^{n-1}) = n

CASE FILE COPY

where "," indicates column partition and ";" a row partition are satisfied, we call [A,B,C] a <u>minimal linear system</u>. Let I be the identity matrix. We define the <u>spectral norm</u> of a linear system as the minimum value of r > 0 such that the Hermetian matrix inequality

This work was supported by NASA under Grant NGR-22-009-124, and NSF under Grant GK-2645 and the Army Research Office, Durham.

^{**} Present address, Harvard University, Cambridge, Mass. 02138.

$$Ir^2 - B'(-Ii\omega - A')^{-1}C'C(Ii\omega - A)^{-1}_{B\geqslant 0}$$
; $i = \sqrt{-1}$ (3)

holds for all real w. If no such r exists the spectral norm is said to be infinite.

The linear system [A,B,C] will be considered together with a functional

$$\eta = \int_0^\infty u'u + \rho y'ydt \tag{4}$$

whose minimization is to be considered. We take as known, the facts that under the hypothesis that [A,B,C] is a minimal linear system there is,

i) at most one solution such that A-BB'K has its eigenvalues in Res < 0

ii) min
$$\int_0^\infty u'u + \rho y'ydt$$
 exists for $\rho > 0$

iii) if the minimum exists, min
$$\int_0^\infty u'u + \rho y'ydt = x'(0)K_1x(0)$$

where K_1 is a solution of equation (1).

Items ii) and iii) are widely known since Kalman [1]; for a proof of i) see [2].

A few additional preliminary results will be required.

Lemma 1: Let u be given by $u(t) = He^{Ft}g$. Let y be given by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
; $y(t) = Cx(t)$; $x(0) = 0$

Assume that the eigenvalues of A and F lie in the half-plane Re s < 0. Then

$$\int_0^\infty y'(t)y(t)dt \leqslant r^2 \int_0^\infty u'(t)u(t)dt$$

where r is the spectral norm of [A,B,C].

<u>Proof</u>: Since x(0) is zero the Laplace transform of y is $\hat{y} = R\hat{u}$. Using Parseval's relation and the definition of the spectral norm we have

$$\int_{0}^{\infty} y'(t)y(t)dt = \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} u'(-i\omega)G'(-i\omega)G(i\omega)u(i\omega)d\omega$$

$$\leq \frac{1}{2\pi i} \int_{-i\infty}^{+i\infty} u(-i\omega)(r^{2}I)u(i\omega)d\omega$$

$$= r^{2} \int_{0}^{\infty} u'(t)u(t)dt$$

<u>Lemma 2</u>: If [A,B,C] is a linear system with a finite spectral norm then equation (1) has no real solution unless $\rho > -r^2$.

<u>Proof</u>: We assume the contrary and look for a contradiction. Let K_1 be a real solution. Manipulation of equation (1) in the style of Yacubovich, Kalman et al.

[3] gives

$$(-Is-A')K_1 + K_1(Is-A) + K_1BB'K_1 = \rho C'C$$

Pre- and post-multiplying by (-Is-A') and (Is-A) respectively gives

$$K_1(Is-A)^{-1} + (-Is-A')^{-1}K_1 + (-Is-A')^{-1}K_1BB'K_1(Is-A)^{-1} = \rho(-Is-A')^{-1}C'C(Is-A)^{-1}$$

Now if we pre and post multiply by B' and B respectively and add I to each side we obtain

$$[I + R_1(-s)]'[I+R_1(s)] = I + \rho R'(-s)R(s)$$

where $R(s) = C(Is-A)^{-1}B$ and $R_1(s) = B'K_1(Is-A)^{-1}B$. Since the left side is non-negative for $s = i\omega$ the right must be also. Hence unless ρ is greater than $-r^2$ we can have no solution.

Lemma 3: The quadratic equation

$$A'K + KA - KBB'K = 0 (5)$$

has an invertible solution if and only if there exists an invertible solution of the linear equation

$$L(Q) = QA' + AQ = BB'$$
(6)

If the solution of the linear equation is unique and invertible then it is the only invertible solution of the quadratic equation.

<u>Proof</u>: If the quadratic equation has an invertible solution K_1 then pre and post multiplication of $A'K_1+K_1A-K_1BB'K_1$ by K_1^{-1} gives $AK_1^{-1}+K_1^{-1}A'=BB'$. On the other hand, if Q is an invertible solution of the linear equation then its inverse satisfies the quadratic equation. Uniqueness follows by the same reasoning.

2. The Case where A has its Eigenvalues in $Re \ s < 0$

Using these results it is possible to investigate the solutions of the quadratic matrix equation

$$KA + A'K - KBB'K = \rho C'C$$

and to relate them to the solution of the linear equation

Our notation will be as follows. By $K_{+}(\rho)$ we mean the (unique) solution of equation (1) having the property that the eigenvalues of A-BB'K lie in the half-plane Re s < 0. Likewise we let $K_{-}(\rho)$ be the solution of equation (1) having the property that all the eigenvalues of A-BB'K lie in the half plane Re s > 0.

Lemma 4: Let [A,B,C] be a minimal linear system with finite spectral norm r. Assume there exists solutions K_+ and K_- described above. Then $K_+(\rho) - K_-(\rho)$ is positive definite for $\rho > -r^{-2}$ and

$$K_{+}(\rho) - K_{-}(\rho) = \left[\int_{0}^{\infty} e^{\left[A - BB'K_{+}(\rho)\right]t} BB'e^{\left[A - BB'K_{+}(\rho)\right]'t} dt\right]^{-1}$$

or alternatively

$$K_{+}(\rho) - K_{-}(\rho) = \left[\int_{-\infty}^{0} e^{[A-BB'K_{-}(\rho)]t} e^{[A-BB'K_{-}(\rho)]'t} dt\right]^{-1}$$

<u>Proof</u>: Direct manipulation shows that $K_{\perp}(\rho)-K_{\parallel}(\rho)$ satisfies

$$[K_{+}(\rho)-K_{-}(\rho)][A-BB'K_{+}(\rho)] + [A-BB'K_{+}(\rho)]'[K_{+}(\rho)-K_{-}(\rho)] = -[K_{+}(\rho)-K_{-}(\rho)]BB'[K_{+}(\rho)-K_{-}(\rho)]$$
(7)

From Lemma 3 we see that if there exists an invertible solution $[K_+(\rho)-K_-(\rho)]$ it must satisfy equation (6) and conversely. However, it is easily seen that the given expressions for $K_+(\rho)-K_-(\rho)$ are well defined and invertible as long as A-BB'K(ρ) has its eigenvalues in Re s < 0 using standard results from controllability theory [2].

The following theorem gives a bound on the solution of equation (1) in terms of the solution of KA + A'K = -C'C and the spectral norm r.

Theorem 1: Let [A,B,C] be a minimal linear system with spectral norm r. Assume that the eigenvalues of A lie in the half-plane Re s < 0. Then for $\rho > -r^{-2}$ there exists a solution of KA+A'K-KBBK = - ρ C'C which has the property that A-BB'K_(ρ) has its eigenvalues in Re s < 0 and

$$K_1 \rho > K_1 \rho / (1 + r^2 \rho)$$
 (8)

where K_1 is the solution of $AK_1 + K_1A = -C'C$. Moreover, there are no other solutions of $KA + A'K - KBB'K = -\rho C'C$ which have the property that A-BBK has its eigenvalues in Re s < 0.

<u>Proof</u>: First of all observe that the upper bound on $K_{+}(\rho)$ is obvious from the variational interpretation of $K_{+}(\rho)$ since by letting u be zero we obtain

$$\int_{0}^{\infty} u^{2} + \rho y^{2} dt = \rho x'(0) K_{1} x(0)$$

We know that for the minimal linear system (2) we have

$$\min_{u} \int_{0}^{\infty} u'(t)u(t) + \rho y'(t)y(t)dt = x'(0)K_{+}(\rho)x(0)$$

provided A-BB'K₊(ρ) has its eigenvalues in Re s < 0. If u_o and y_o denote the optimal control and the optimal response then

$$y_0 = Ce \begin{bmatrix} A-BB'K_{+}(\rho) \end{bmatrix} \quad [A-BB'K_{+}(\rho)] \quad x(0)$$

Moreover, y_0 can be expressed using transforms as the sum of an initial condition term and the effect of u_0 , i.e.

$$y_0 = C(Is-A)^{-1}x(0) + R(s)u_0(s) = y_1(s) + y_2(s)$$

In terms of this notation

$$x'(0)K_{+}(\rho)x(0) = \int_{0}^{\infty} \rho[y'_{1}(t)+y'_{2}(t)][y_{1}(t)+y_{2}(t)] + u'(t)u(t)dt$$

Using the preceeding lemma we have

$$r^{2} \int_{0}^{\infty} u'(t)u(t)dt > \int_{0}^{\infty} y'_{2}(t)y_{2}(t)dt$$

Also, from the known relationship between KA + A'K = -C'C and quadratic integrals we have

$$x'(0)K_1x(0) = \int_0^\infty y_1'(t)y_1(t)dt$$

Denote this last quantity by μ^2 and let ν^2 be defined by

$$v^2 = \int_0^\infty y_2'(t)y_2(t)dt$$

Combining these results we have

$$x'(0)K_{+}(\rho)x(0) \ge \rho\mu^{2}-2|\rho|.|\int_{0}^{\infty}y_{1}'(t)y_{2}(t)dt| + (\rho + r^{-2})\nu^{2}$$

Now use the Schwartz inequality

$$\left| \int_{0}^{\infty} y_{1}'(t)y_{2}(t)dt \right| \ge \sqrt{\int_{0}^{\infty} y_{1}'(t)y_{1}(t)dt} \sqrt{\int_{0}^{\infty} y_{2}'(t)y_{2}(t)dt}$$

to obtain

$$x'(0)K_{+}(\rho)x(0) \ge \rho\mu^{2} - 2|\rho|\mu\nu + (\rho+r^{-2})\nu^{2}$$

Considering this as a function of ν , it has a minimum at $\nu=\mu|\rho|/(\rho+r^{-2})$ and the minimum value is $\rho\mu^2(1+\rho r^2)$. Therefore it is clear that for $\rho>-r^2$ the inequalities

$$x'(0)K_1x(0) \ge x'(0)K_+(\rho)x(0) \ge x'(0)K_1x(0)\rho/(1+\rho r^2)$$

hold. The matrix inequality follows immediately.

To study existance we observe that a solution exists for $\rho > 0$ and by differentiation

$$[\frac{d}{d\rho} K_{+}(\rho)][A-BB'K_{+}(\rho)] + [A-BB'K_{+}(\rho)]'[\frac{d}{d\rho} K_{+}(\rho)] = -C'C$$

$$\frac{d}{d\rho} K_{+}(\rho) = \int_{0}^{\infty} e^{[A-BB'K_{+}(\rho)]t} C'Ce^{[A-BB'K_{+}(\rho)]'t} dt$$

This differential equation can be integrated in the direction of decreasing ρ until A-BB'K₊(ρ) has an eigenvalue with a zero real part. In view of inequality (8), a solution K₊(ρ) will therefore exist for $\rho > -r^2$. To show that it also exists for $\rho > r^2$. Note that K₊(ρ) is monotone decreasing for ρ decreasing. By lemma 4 K₊(ρ) is bounded from below for $\rho > -r^2$ hence

$$\lim_{\rho \to -r^2} K_+(\rho) = \overline{K}$$

exists and by continuity \overline{K} satisfies equation (1) with $\rho = r^2$.

Notice that the spectral norm of [-A,B,C] is the same as that of [A,B,C] and hence that there also exists a solution of

$$(-A')K + K(-A) - KBB'K = -\rho C'C$$

which puts the eigenvalues of -A-BB'K in Re s < 0. The negative of this solution is $K_{(\rho)}$.

3. The Case where the Spectral Norm is Finite

We now extend the results of the previous section to a wider class of systems.

The main result, Theorem 2, includes Theorem 1 as a special case but the proof makes a full case of Theorem 1.

We need the following lemma to reduce the general case to Theorem 1.

<u>Lemma 5</u>: If $K_0 = K_0^{\dagger}$ is any solution of

$$K_{0}A + A^{\dagger}K_{0} - K_{0}BB^{\dagger}K_{0} = 0$$
 (9)

And if $K(\rho)$ is any solution of

$$A'K(\rho) + K(\rho)A - K(\rho)BB'K(\rho) = -\rho CC'$$

then

$$[K(\rho) - K_o][A-BB'K_o] + [A-BB'K_o]'[K(\rho)-K_o] + [K(\rho) - K_o]BB'[K(\rho) + K_o] = -\rho C'C$$
(10)

<u>Proof</u>: The proof is just a matter of expanding and using the definitions. The details are omitted.

As we have seen, equation (5) can have at most one invertible solution but it can have numerous non-invertible ones. In particular 0 is always a solution as are $K_{+}(0)$ and $K_{-}(0)$. However, the particular solution $K_{+}(0)$ satisfies

$$K_{+}(0)[A-BB'K_{+}(0)] + [A-BB'K_{+}(0)]'K_{+}(0) = -K_{+}(0)BBK_{+}(0)$$

Since A-BB'K₊(ρ) has its eigenvalues in Re s < 0 for ρ > 0 it will follow that its eigenvalues lie in Re s < 0 for ρ = 0 unless the spectral norm of [A-BB'K₊(0),B,C] is infinite. This makes the following lemma of interest.

Lemma 6: If $K_0 = K_0'$ is a solution of

$$K_0A + A'K_0 - K_0BB'K_0 = 0$$

such that $A-BB^{\dagger}K_{0}$ has its eigenvalues in the half-plane Re s < 0 then the spectral norms of [A,B,C] and [A-BB $^{\dagger}K_{0}$,B,C] are the same.

 \underline{Proof} : From lemma 5 see that if K_o satisfies the hypothesis then

$$K(A-BBK_0) + (A-BB'K_0)'K - KBB'K = -\rho C'C$$
 (11)

has a solution if and only if there exists a solution of

$$KA + A'K - KBB'K = -\rho C'C$$

Combining Lemma 4 and Theorem 1 we see that this equation has a solution if and only if $\rho \geqslant -r^2$ where r is the spectral norm of [A,B,C]. Since the same is true for equation (11) the spectral norm of [A-BB'K_O,B,C] must also be r^2 .

Putting these lemmas together with Theorem 1 gives the following generalization of Theorem 1.

Theorem 2: Let [A,B,C] be a minimal linear system with spectral norm r. Then for $\rho \geqslant r^{-2}$ there exists a solution of equation (1) and

$$K_1 \rho > K_+(\rho) - K_+(0) > K_1 \rho / (1 + r^2 \rho)$$

where K_1 is the solution of $[A-BB'K_+(0)]'K_1+K_1[A-BB'K_+(0)] = -CC$. Moreover, there are no other solutions of $KA + A'K - KBB'K = -\rho C'C$ which have the property that A-BB'K has its eigenvalues in Re < 0.

4. Additional Comments

The results given here give the following (still incomplete) picture of the solutions of equation (1) under the hypothesis that A has no eigenvalue with zero real part.

- i) There exist real solutions if and only if $\rho > r^{-2}$
- ii) For $\rho > r^2$ there is exactly one solution such that A-BB'K has its eigenvalues in Re s < 0 and exactly one solution such that A-BB'K its eigenvalues in Re s > 0

iii)
$$K_{\perp}(\rho) - K_{\perp}(\rho) > 0$$

Figure 1 suggests the main qualitative features and illustrates the bounds. Of course similar bounds hold for $K_{\perp}(\rho)$.

We note that our results provide a new proof of certain important theorems on the absence of conjugate points [5]. Moreover, our proof does not use any results on spectral factorization of rational matrices.

Additional refinements of these ideas can be found in Canales' thesis [4].

Figure 1: A suggestive picture of the general behavior of $K_+(\rho)$ and $K_-(\rho)$.

If K is one dimensional then $K_+(\rho)$ and $K_-(\rho)$ join at ρ =-r².

5. References

- 1. R.E. Kalman, "Contributions to the Theory of Optimal Control," Boletin de la Sociedad Matematica Mexicana, 1960.
- 2. R.W. Brockett, Finite Dimensional Linear Systems, J. Wiley, 1970.
- 3. B.D.O. Anderson, "A System Theory Criterion for Positive Real Matrices," SIAM J. on Control, Vol. 5, No. 2, May 1967, 171-182.
- 4. R. Canales, "A Priori Bounds on the Performance of Optimal Systems," Ph.D. Thesis, Dept. of Electrical Engrg., M.I.T., 1968.
- 5. V.M. Popov, "Hyperstability and Optimality of Automatic Systems with Several Control Functions," Rev. Roum, Sci.-Electrotechn. et Engrg., Vol. 9, 1964, 629-690.